Index

B | C | D | F | M | O | R | S | T | U

B

  • backprop() (slugnet.layers.Dense method)
  • backward() (slugnet.loss.BinaryCrossEntropy method)
    • (slugnet.loss.Objective method)
    • (slugnet.loss.SoftmaxCategoricalCrossEntropy method)
  • BinaryCrossEntropy (class in slugnet.loss)

C

  • Convolution (class in slugnet.layers)

D

  • Dense (class in slugnet.layers)
  • Dropout (class in slugnet.layers)

F

  • fit() (slugnet.model.Model method)

M

  • MeanPooling (class in slugnet.layers)
  • Model (class in slugnet.model)

O

  • Objective (class in slugnet.loss)

R

  • ReLU (class in slugnet.activation)
  • RMSProp (class in slugnet.optimizers)

S

  • SGD (class in slugnet.optimizers)
  • Sigmoid (class in slugnet.activation)
  • slugnet.activation (module)
  • slugnet.loss (module)
  • slugnet.model (module)
  • slugnet.optimizers (module)
  • Softmax (class in slugnet.activation)
  • SoftmaxCategoricalCrossEntropy (class in slugnet.loss)

T

  • Tanh (class in slugnet.activation)
  • transform() (slugnet.model.Model method)

U

  • update() (slugnet.optimizers.RMSProp method)
    • (slugnet.optimizers.SGD method)

Navigation

  • Introduction to Deep Learning
  • Models
  • Layers
  • Activation Functions
  • Loss Functions
  • Optimization Functions

Related Topics

  • Documentation overview

Quick search

©2017, Jarrod Kahn. | Powered by Sphinx 1.7.5 & Alabaster 0.7.11
Fork me on GitHub